7n^2+84n+240=-5

Simple and best practice solution for 7n^2+84n+240=-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7n^2+84n+240=-5 equation:



7n^2+84n+240=-5
We move all terms to the left:
7n^2+84n+240-(-5)=0
We add all the numbers together, and all the variables
7n^2+84n+245=0
a = 7; b = 84; c = +245;
Δ = b2-4ac
Δ = 842-4·7·245
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-14}{2*7}=\frac{-98}{14} =-7 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+14}{2*7}=\frac{-70}{14} =-5 $

See similar equations:

| 8x+14=4x-1 | | X^2+x^2+4=52 | | -23-7x=33 | | 3(x-4)+1=2(x-5)+5x | | 20+7k=16k | | 10^2x-10^x+12=0 | | 3(2x+2)+x+5=  −10−10 | | 2(6x-5)=-2x+18 | | (2x+1)+(6x-35)=90 | | 40-1.2y+y=18 | | 7x+2+2=92 | | (5^n)=17 | | 6(2y−4)=  00 | | 5.5x=-12 | | 6+17=-15+4y | | 0=–q6 | | 9(2x-3)+8=17÷4(3x+8)+5=61 | | 9(2x-3)+8=17÷4(3x+8)+6=61 | | 52=z+17 | | 124=12(5+32x) | | 82/5x=83/5 | | 19=19-x/50 | | 5x-2+2x-1=11 | | 4-5a-3-7a=9 | | -3a+5=9 | | -10/b=100 | | 10/b=100 | | 56+4.5x+x+1.5x+94=360 | | Y^2-5y+7=0 | | (n+7)(n+9)=0 | | 1/2(-10x+2)=6 | | -5b=50 |

Equations solver categories